a2 United States Patent

US009385757B1

(10) Patent No.: US 9,385,757 B1

Nangare (45) Date of Patent: Jul. 5, 2016
(54) SYSTEMS AND METHODS FOR USING A (52) U.S.CL
NON-BINARY SOFT OUTPUT VITERBI CPC ... HO3M 13/256 (2013.01); HO3M 13/41

(71)

(72)

(73)

")

@
(22)

(60)

(1)

ALGORITHM

Applicant: Marvell International Ltd., Hamilton
(BM)

Inventor: Nitin Nangare, Santa Clara, CA (US)

Assignee: Marvell International Ltd., Hamilton
(BM)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 288 days.

Appl. No.: 14/031,637

Filed: Sep. 19, 2013

Related U.S. Application Data

Provisional application No. 61/706,556, filed on Sep.
27,2012.

(2013.01); HO4L 1/006 (2013.01)
(58) Field of Classification Search
CPCcc..... HO3M 13/256; HO3M 13/41; HO3M
13/2957, HO3M 13/3905; HO3M 13/4107,
HO3M 13/3961; HO4L 1/006
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
7,162,675 B2* 1/2007 Dasetal. 714/751
7,865,814 B2* 1/2011 Ashleyetal. 714/792
2004/0243914 Al* 12/2004 Nodacccceevevernee 714/792

* cited by examiner

Primary Examiner — Cynthia Britt
Assistant Examiner — Dipakkumar Gandhi

(57) ABSTRACT

Systems and methods are provided for generating a likelihood
value. A detector identifies a winning path through a trellis
and a plurality of losing paths through the trellis and com-
putes path metric differences within the trellis based on the
winning path and at least some of the plurality of losing paths.

Int. Cl. . .
HO3M 13/41 (2006.01) The detector calculates a pair of error metrics based on the
HO3M 1325 (200 6.01) path metric differences and determines the likelihood value
HO3M 13/53 (200 6.01) based on a difference between the pair of error metrics.
HO4L 1/00 (2006.01) 20 Claims, 9 Drawing Sheets
100
102 106
— ~ /112
TRANSMITTING TRELLIS-
USER OR p| BASED » MODULATOR
APPLICATION | MESSAGE ENCODER | COPEWORD
104 yd 110 7
A
M cHannEL
A 4
116 ~
DEMODULATOR
118 ~_RECEIVED
CODEWORD
_-130 124
A
RECEIVING MODIFIED
USEROR [« VITERBI < DETECTOR
APPLICATION DECODED | peTECTOR DETECTOR
MESSAGE SAMPLE 120 /
128 ~~

122

US 9,385,757 B1

Sheet 1 of 9

Jul. §5,2016

U.S. Patent

D E
ozl el _- 92l
e 3I1dNVS JOVSSIAN
HOl19313a d010313d a3Iaon3ada NOILVYOINddV
¥0.10313d » 1gyALIA » Ho¥3SN
a314Iaon ONIAIFOTY
yeL =" oL —
ayomM3aoo
A3aNIFOTE gy,
¥OLYINAOWIAN, o |
TANNYHO
e
/ oLl e 70l
aquomaaos | ¥3A0ON3 JovSsan NOILYDI1ddV
HOLYINAOW |« a3sva |« ¥0 ¥3sn
-SI713YL ONILLINSNVYL
I — —
901 20}
001

US 9,385,757 B1

Sheet 2 of 9

Jul. §5,2016

U.S. Patent

<

¥GC SANTVA
471 ddv

ALLINOAIO

NOILVLNdWOO <

dT1109NAS
[4°T4

16¢ SIN3NT
dOdd3I N

Zve SANTVA

40103130
[9d31LIA
dVANITINON
¥¥e

dT11 14OV
<

<

(74

¢ 9ld
8%¢ and
Moo1a [e——
MOva30vHL
VAOS AYVNIgE
0S¢]
972 H1vd
ONINNIM
00¢

SATdINVS
did

U.S. Patent Jul. 5, 2016 Sheet 3 of 9 US 9,385,757 B1

&
8 .
& O
Li.

360

U.S. Patent Jul. 5, 2016 Sheet 4 of 9 US 9,385,757 B1

-q-
i -
el
D:-—/"\
m A
I}
o
L™ <
[N
S O
______ ? L.
-
1 -~
P
)
T N
el

U.S. Patent Jul. 5, 2016 Sheet 5 of 9 US 9,385,757 B1

N
n.\‘
-q-
i -
el
m A
I}
o
Lo 0
[N
S O
______ Ll
-
1 -~
P
)
T N
el

U.S. Patent Jul. 5, 2016 Sheet 6 of 9 US 9,385,757 B1

00

602 IDENTIFY A WINNING PATH THROUGH A TRELLIS
AND A PLURALITY OF LOSING PATHS THROUGH THE
TRELLIS

l

604 COMPUTE PATH METRIC DIFFERENCES WITHIN THE
TRELLIS BASED ON THE WINNING PATH AND AT LEAST
SOME OF THE PLURALITY OF LOSING PATHS

l

606 CALCULATE A PAIR OF ERROR METRICS BASED ON
THE PATH METRIC DIFFERENCES

608 DETERMINE A LIKELIHOOD VALUE BASED ON A
DIFFERENCE BETWEEN THE PAIR OF ERROR METRICS

FIG. 6

U.S. Patent Jul. 5, 2016 Sheet 7 of 9 US 9,385,757 B1

700
706 INITIALIZE ALL M, | _ 704 INITIALIZE TIME | |Z02RETRIEVE WIRING
VALUES TO INF INTERVAL t = 0 METRIG Bl
S T,
i AS REFERENCE VALUE o ate ER

v

712 INITIALIZE LOSING
PATH COUNTER p=1

A 4

CURRENT ERROR SYMBO

YES

718p=p+1 [«NO eM, (k] > PM, - PMy.?

!
>

YES
A 4
720 UPDATE
eM, k] = PM; - PMpy.

NO

726 k=k+1 [&NO YES

732 COMPUTE LLR
VALUES BASED ON eM|« YES
VALUES

FIG. 7

US 9,385,757 B1

Sheet 8 of 9

Jul. §5,2016

U.S. Patent

&S

MH

o

8 'Old

GE

|OqUIAS Ajayil-isean]

G

N

O

v

SO |OqQWIAS

|OqUIAS Ae)i|-1ISON

b _N_AIL

F- N

0

o+

o)
15

B
Lt

01 o1
SY17 I0qWAS

US 9,385,757 B1

Sheet 9 of 9

Jul. §5,2016

U.S. Patent

6 'Old
976 (S)asvav.Lva

716 (SINOILYOIddV 506 NON

ZIBW3LSAS | TT6S301A30 706 WV

ONILYH3dO 39VHOLS

€06 AOW3IN WILSAS
]
016 ¥3TIOYINOD 806 LINN FOV443LNI 906 NdO
1N4LNO/LNdNI SNOILYIINNWINOD
816 YHOMLAN
00

US 9,385,757 B1

1
SYSTEMS AND METHODS FOR USING A
NON-BINARY SOFT OUTPUT VITERBI
ALGORITHM

CROSS REFERENCE TO RELATED
APPLICATION

This application claims the benefit under 35 U.S.C. §119
(e) of U.S. Provisional Application No. 61/706,556, filed Sep.
27, 2012, the contents of which are hereby incorporated by
reference herein in its entirety.

BACKGROUND

The background description provided herein is for the pur-
pose of generally presenting the context of the disclosure.
Work of the inventors hereof, to the extent the work is
described in this background section, as well as aspects of the
description that may not otherwise qualify as prior art at the
time of filing, are neither expressly nor impliedly admitted as
prior art against the present disclosure.

The present disclosure relates generally to data decoding,
and more particularly to soft output Viterbi algorithms
(SOYA). Consider a system that can be represented by a finite
state machine. For example, a finite state machine can be used
to model an inter-symbol-interference (ISI) channel or a con-
volutional code encoder. A trellis diagram can be used to
represent the sequence of all possible paths (i.e., sequences of
states) that the system can visit over time. If the system can
transition from state A at time t to state B at time t+1, then
these states are connected by a branch. Each branch may be
labeled by an X/Y pair, where X denotes the input that causes
the system to transition from state A to B and Y represents an
output corresponding to this transition. For example, a chan-
nel with a two-bit channel response can be represented by a
four-state trellis diagram. The states of this trellis can be
labeled as 00, 01, 10, 11 and may be associated with the latest
two bits transmitted through the channel. For example, if the
system is at state 01 at time t, and O is transmitted, then the
next state at time t+1 would be 10. Similarly, the system
would transition to state 11 if 1 were transmitted. Channel
outputY thatresults from these transitions is a real number m,
that may be different for each branch. The signals at the
output of the channel are detected by a trellis-based detector,
such as a Viterbi (maximum-likelihood) detector, which is
based on the trellis representing the channel.

However, a Viterbi detector does not receive the particular
path that occurred in the trellis of the channel. Rather, the
Viterbi detector uses the signals/bits it receives to find the
trellis path that most-likely occurred based on the received
signals/bits. This detection is often complicated by the pres-
ence of noise or errors in the received signals or bits. In some
situations, the trellis path that most-likely occurred based on
the received signals or bits may not be the same as the trellis
path that actually occurred in the channel.

SUMMARY

In accordance with an implementation of the disclosure,
systems and methods are provided for generating a likelihood
value. A detector identifies a winning path through a trellis
and a plurality of losing paths through the trellis and com-
putes path metric differences within the trellis based on the
winning path and at least some ofthe plurality of losing paths.
The detector calculates a pair of error metrics based on the
path metric differences and determines the likelihood value
based on a difference between the pair of error metrics.

10

15

20

25

30

35

40

45

50

55

60

65

2

A first error metric in the pair is determined based on a most
likely symbol u, ,, in the winning path and another symbol u,,
and a second error metric in the pair is determined based on
the most likely symbol u, ;. A reference value for each error
metric in the pair is a most likely symbol u,; in the winning
path. The pair of error metrics are elements in a vector of error
metrics, where a length of the vector of error metrics is one
less than a number of candidate symbols.

In some implementations, calculating the pair of error met-
rics comprises updating an error metric in the pair to be equal
to one of the path metric differences when it is determined
that a previous value of the error metric in the pair is greater
than the one of the path metric differences. The detector may
further determine a plurality of additional likelihood values,
where the likelihood value and each additional likelihood
value is associated with a corresponding candidate symbol
value. The likelihood value that is determined by the detector
may used in a soft output Viterbi algorithm (SOVA).

In accordance with an implementation of the disclosure, a
detector comprises circuitry communicatively coupled to a
memory. The circuitry is configured to identify a winning
path through a trellis and a plurality of losing paths through
the trellis and compute path metric differences within the
trellis based on the winning path and at least some of the
plurality of losing paths. The circuitry is further configured to
calculate a pair of error metrics based on the path metric
differences and determine the likelihood value based on a
difference between the pair of error metrics.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and other features of the present disclosure,
including its nature and its various advantages, will be more
apparent upon consideration of the following detailed
description, taken in conjunction with the accompanying
drawings in which:

FIG. 1is ablock diagram of an illustrative communications
system employing a Viterbi detector, in accordance with an
embodiment of the present disclosure;

FIG. 2 is a block diagram of an illustrative modified Viterbi
detector, in accordance with an embodiment of the present
disclosure;

FIG. 3 is a graphical illustration of a winning path and a
losing path for a trellis having two states, in accordance with
an embodiment of the present disclosure;

FIG. 4 is a graphical illustration of a winning path and two
losing paths that are evaluated during a first step of a trace-
back process, in accordance with an embodiment of the
present disclosure;

FIG. 5 is a graphical illustration of a winning path and two
losing paths that are evaluated during a second step of a
traceback process, in accordance with an embodiment of the
present disclosure;

FIG. 6 is a flow chart of a process for calculating a likeli-
hood value, in accordance with an embodiment of the present
disclosure;

FIG. 7 is a flow chart of a process for updating error metric
values and calculating likelihood values, in accordance with
an embodiment of the present disclosure;

FIG. 8 is a graphical illustration of representations of sym-
bol likelihood values and symbol metrics, in accordance with
an embodiment of the present disclosure; and

FIG. 9 is a block diagram of a computing device, for
performing any of the processes described herein, in accor-
dance with an embodiment of the present disclosure.

DETAILED DESCRIPTION

This disclosure generally relates to determining likelihood
values at a detector that provides soft information. To provide

US 9,385,757 B1

3

an overall understanding of the disclosure, certain illustrative
embodiments will now be described, including a modified
Viterbi detector that performs a traceback operation to com-
pute error metric values and corresponding likelihood values.
However, it will be understood by one of ordinary skill in the
art that the systems and methods described herein may be
adapted and modified as is appropriate for the application
being addressed, and that the systems and methods described
herein may be employed in other suitable applications, and
that such other additions and modifications will not depart
from the scope thereof.

FIG. 1 shows an illustrative communications system 100
for decoding based, in part, on a trellis-based code, in accor-
dance with some embodiments of the present disclosure. A
communications system 100 is used to transmit information
from a transmitting user or application 102 to a receiving user
or application 130. The transmitting user or application 102
represents an object or entity that produces information. For
example, the transmitting user or application 102 may corre-
spond to a software program in a computer system or to a
component of a wireless communications transmitter in a
radio system. The transmitting user or application 102 pro-
duces information in the form of a data stream, and the data
stream may be represented by a sequence of symbol values
that have been pre-processed by, for example, a source
encoder (not shown in FIG. 1). The information produced by
the transmitting user or application 102 may correspond to
voice information, video information, financial information,
or any other type of information that may be represented in
digital or analog form, and the data stream produced by
transmitting user or application 102 may be a digital data
stream.

Message 104 that is intended for communication, storage,
or both may be encoded by a trellis-based encoder 106 to
generate codeword 110, which includes parity information or
parity bits. The trellis-based encoder 104 introduces addi-
tional information such that codeword 110 includes more bits
than message 104. In some embodiments, a portion of the
codeword 110 may include the message 104, in which case,
the encoder is known as a “systematic” encoder.

The codeword 110 may be modulated or otherwise trans-
formed by a modulator 112 into a waveform suitable for
transmission and/or storage on a channel 114. For example,
the waveform may correspond to an analog Binary Phase-
Shift Keying (BPSK) signal, analog Phase-Shift Keying
(PSK) signal, analog Frequency-Shift Keying (FSK) signal,
analog Quadrature Amplitude Modulation (QAM) signal, or
any other suitable analog or digital signal.

The channel 114 refers to the physical medium through
which the transmitted waveform passes, or on which it is
stored, before being recovered at a demodulator 116. For
example, the channel 114 may be a storage channel that
represents a storage medium in a computer system environ-
ment or a communications channel that represents the wire-
less propagation environment in a wireless communications
environment. Various characteristics of the channel 114 may
corrupt data that is communicated or stored thereon. For
example, the channel 114 may be a non-ideal memoryless
channel or a channel with memory. The output of the channel
114 is demodulated and processed by the demodulator 116 to
produce a received codeword 118. The demodulator 116 may
use frequency filters, multiplication and integration by peri-
odic functions, and/or any other suitable demodulation tech-
nique to demodulate and/or process the output of the channel
114. In some cases, the term “channel” as used herein may
also include the modulator 112 and the demodulator 116.

10

15

20

25

30

35

40

45

55

60

65

4

While in the channel 114, the signal may encounter error-
producing phenomena, such as device physical failure, device
electrical failure, signal interference, and/or data loss due to
buffer overflow, for example. The interference signals and
other error-producing phenomena in a channel 114 will be
referred to herein as “noise”” As shown by the description
above, the terms channel and noise are more conceptual than
physical, but they may correspond to physical aspects of a
system. For ease of explanation, it will be assumed that in this
embodiment the channel 114 of FIG. 1 is not an ISI channel.
However, channel 114 can include an ISI channel in another
embodiment.

The received codeword 118 contains information related to
the codeword 110 and may be a corrupted or otherwise altered
version of the codeword 110 originally outputted by the
encoder 106. For example, the received codeword 118 may
contain a preliminary estimate or noisy version of the code-
word 110, a probability distribution vector of possible values
of the codeword produced by the encoder 106, or combina-
tions of these as well as other values.

A detector 120 is used to process the received codeword
118 to produce a detector sample 122, which is an estimate of
the original data message 104. The detector 120 samples each
symbol in the received codeword 118 and assigns each sym-
bol to a bin based on its value. In some embodiments, the bin
is assigned based on a probability distribution. Each symbol
sampled by the detector 120 is assigned to one of two or more
possible bins, or states.

If there are no errors in the received codeword 118, the
received codeword 118 is the same as the codeword 110. If
there are errors, however, modified Viterbi decoder 124 may
be able to correct some or all of the errors by using maximum-
likelihood detection. If the modified Viterbi decoder 124 is
able to correct all of the errors, the decoded message 128 will
bethe same as the message 104. Modified Viterbi decoder 124
receives and iteratively processes the detector sample 122.
The detector 120 and the modified Viterbi decoder 124 may
be two separate processors, or a single processor may be used
as both the detector 120 and the modified Viterbi decoder 124.

In general, the modified Viterbi decoder 124 comprises
control circuitry and/or decoding circuitry used to iteratively
correct and/or detect errors present in the detector sample
122, for example, due to transmission through the channel
114. In general, detection/decoding operate based on the
same concept of computing metrics for each branch of the
trellis; the trellis is based on receiving the signals/bits, and
then identifying the path through the trellis that has the lowest
cumulative metric. The cumulative metric of a path will be
referred to herein as a “path metric.” Additionally, the path
that has the lowest path metric will be referred to as the
“winning path,” and the trellis state at the end of the winning
path will be referred to as the “winning state.” All paths other
than the winning path will be referred to as “losing paths.”
Suitable methods for processes that are performed by modi-
fied Viterbi detector 124 are described in more detail in rela-
tion to FIGS. 2-8.

The modified Viterbi decoder 124 provides the decoded
message 128 to the receiving user or application 130. The
receiving user or application 130 may correspond to the same
device or entity as the transmitting user or application 102, or
the receiving user or application 130 may correspond to a
different device or entity. Further, the receiving user or appli-
cation 130 may be either co-located or physically separated
from the transmitting user or application 102. If the modified
Viterbi detector 124 corrects all errors that are induced by the
channel 114 and other communications effects in the com-

US 9,385,757 B1

5

munications system 100, then the decoded message 128 is a
logical replica of the message 104.

FIG. 2 is a block diagram of a modified Viterbi detector
200. Modified Viterbi detector 200 may be used as modified
Viterbi detector 124 in system 100. Modified Viterbi detector
200 includes a nonlinear Viterbi detector 244, a binary SOVA
traceback block 250, and symbol LLR computation circuitry
252. In particular, FIR samples 240 of a received signal and
corresponding a-priori LLR values 242 ofthe samples 240 are
provided to nonlinear Viterbi detector 244, which provides a
winning path 246 and one or more path metric differences
(PMDs) 248 to binary SOVA traceback block 250. Symbol
LLR computation circuitry 252 performs computation of
symbol LLRs based on error metrics that are computed by
binary SOVA traceback block 250.

Nonlinear Viterbi detector 244 processes FIR samples 240
and LLR values 242 to obtain a winning path 246 through a
trellis and PMD values 248. In particular, nonlinear Viterbi
detector 244 may include components that perform the for-
ward computation of branch metrics (BM) and the updating
of the path metrics (PM). In an example, nonlinear Viterbi
detector 244 performs hard decision decoding. In this case,
the BMs may be computed as a square of the difference
between a received FIR sample 240 and an expected value.
Thus, a large value for a BM indicates a large difference
between a received sample and an expected value and is
indicative that an error may have occurred. Updating the PM
involves accumulating or summing the BMs for the branches
in each path.

When nonlinear Viterbi detector 244 reaches the end of the
forward computation (i.e., the last symbol, the last state, or
the last time instance), nonlinear Viterbi detector 244 pro-
vides winning path 246 (which may also be referred to as the
most likely path (ML-path) or the best path) and the path-
metric differences PMD 248. In particular, nonlinear Viterbi
detector 244 may select from a set of candidate paths to
determine the winning path 246 with the lowest PM. The PM
with the lowest value corresponds to the path that has, on
average, the lowest deviation between the received FIR
samples 240 and the expected values of samples 240. A low
deviation is an indication that a small number of errors has
occurred, the values of the error are small, or a combination
thereof. The PM of the winning path or the most likely path is
referred to herein as PM, ;. Then, nonlinear Viterbi detector
244 computes the difference between the set of PMs associ-
ated with the losing paths (which may also be referred to as
the alternate paths) and PM, ; to obtain PMD values 248.

Binary SOVA traceback block 250 receives winning path
246 and PMD values 248 from nonlinear Viterbi detector 244
and performs trace-back to find the N error-events. During
trace-back, binary SOVA traceback block 250 may consider
any number of the losing paths, such as the second best path,
the third best path, or any other suitable number P of losing
paths. Binary SOVA traceback then selects M out of N error
events and performs post-coding on the error events if there
was precoding performed. In particular, the N error events
may be sorted according to the corresponding PMD values of
the N error events. The selected M error events correspond to
those with the smallest PMDs.

Binary SOVA traceback 250 performs a traceback opera-
tion to obtain error metric values. An example traceback
operation is described in detail in relation to FIGS. 4, 5, and 7.
In particular, binary SOVA traceback block 250 provides the
selected M error events 251 to symbol LLR computation
circuitry 252, which operates on the error events to determine
a posteriori probability LLR values 254. The M error events
251 may be post-coded, and the corresponding PMDs (which

10

15

20

25

30

35

40

45

50

55

60

65

6

are also referred to herein as error metrics) of the M error
events may also be provided to symbol LLR computation
circuitry 252. An example process for determining a set of
LLR values based on a set of error events and its error metric
values is described in detail in relation to FIG. 7.

In some embodiments, a set of candidate symbols are taken
from a Galois field of size q (i.e., GF(q)). In an example, an
index i (starting at O and ending at q-1) may be used to
indicate a candidate symbol u, in the set of q candidate sym-
bols. As used herein, A, refers to a log probability, or a log
likelihood value for a symbol u. In particular, the log likeli-
hood value that a symbol u is equal to a candidate symbol
value v, may be written as A, (u,)=log(u=w,)).

Furthermore, a vector (with length q) oflog likelihood ratio
(LLR) values L, may be defined as:

®

(1t = t)
k’g(iu(z = ZZ)) o

Pult = o)
| o) || = At

1 g(Pulut = uo)]
ool X~
Pul =ug-1)

where each element in the vector L, is the difference between
two log likelihood values: a reference log likelihood value
(corresponding to A, (u,)) and each of the log likelihood val-
ues A, (u,) fori=0, 1, ..., q—1. Thus, each value in the vector
L,,is based on a comparison between a log likelihood value of
the same reference (u,) and each of the corresponding q log
likelihood values. In an example, u,=0 such that the reference
symbol for the LLR vector L, is zero.

In some embodiments, an error metric vector eM,, with
length (q-1) is defined as the probability of making an error
for a particular symbol value. In particular, eM,, may be
defined similarly as L, as a log likelihood ratio. However,
while the reference value for L, is u,, the reference value for
eM,, is u,,,;. Furthermore, instead of being based on the log
likelihood values A () fori=0, 1, ..., q-1, the vector eM,, is
based on the log likelihood values A ([u,,Pi]) for i=1,
2,...,q-1, where the symbol € indicates an exclusive OR
(XOR) function.

Aulbo) = Aultg1) |

Pultt = tpgr) @
o = Tam 617
pultt = tiy))

logf 7 = TMES
O Dt = oz ®2D)

eM, =

log(Pultt = tpgr))

Pulee = [unr @ (g — 1))
Ay(umr) = A ([ome @ 1])
Ay (eagr) = Ay ([etpgr, @ 21)

Ailmar) = A (e @ (@ = DD Iy

The above equation indicates that the error metric vector eM,,
is based on each comparison between the likelihood value of
the most likely symbol u,,, and the likelihood value of each
candidate symbol that is different from the most likely sym-
bol u,,;. In particular, the error metric vector eM,, has length
(q-1) because it is not necessary to compute the XOR of u, ;.

US 9,385,757 B1

7

and zero, because the XOR of this pair is simply u,,,. The
above equation is described for illustrative purposes only, and
the right-hand side of the equation may be preferable to
represent in hardware because of its ease of computation
compared to performing a log computation of a quotient.

FIG. 3 is a graphical illustration of a winning path 360 and
a losing path 362 for a binary SOYA. In particular, the path
metric P, of the winning path 360 is the lowest path metric
PM out of the set of PMs for various paths through the trellis.
Since PM is always positive, the minimum PM corresponds to
the winning path 360. As shown in FIG. 3, the losing path 362
has a PM value of P, +A, which is larger than the PM of the
winning path by an amount A.

The zero values for each time instance along winning path
360 indicate that there is no deviation along the path from the
best path. For the first three time instances, losing path 362
shares the same three branches as winning path 360. How-
ever, at time instance t,, losing path 362 is associated with an
error and deviates from winning path 360 (as shown by v, at
time t,). Losing path 362 deviates from winning path 360 for
five time instances before returning to winning path 360 for
the last two time instances shown in FIG. 3.

In the example shown in FIG. 3, maximum a posteriori
(MAP) decoding, such as a Bahl Cocke Jelinek Raviv (BCIR)
technique, may be performed. In BCJR, the a posteriori prob-
ability is maximized in order to minimize the bit error prob-
ability. While the BCJR technique provides an optimal solu-
tion by providing the MAP results, the BCIR technique is
computationally expensive and time-consuming. In an
example, the BCJR technique may compute the log likeli-
hood ratios (LLR) of a symbol u, according to:

LLR(u;)=min,, paths u(z):o(PM)—miHall paths u(t):ui(PM) (3)

That is, in order to compute the symbol LLRs, the BCIR
technique requires determining the global minimum path
metric for all paths that have u(t)=0 and determining the
global minimum path metric for all paths that have u(t)=u,.
While this process may provide an optimal solution, it can be
computationally expensive and time-consuming.

Assuming that a single error event has occurred, the prob-
ability that the symbol u at time t, is zero corresponds to:
p,(u(t,)=0/y)~e~"", where y is a received sample at the input
to the detector, and the probability that the symbol u attime t,,
is 1, corresponds to: p,,(u(t,)=u,/y e~ “**) The probabilities
are proportional to the right hand side of these equations
because some constant terms related to noise and signal-to-
noise ratio (SNR) are not shown. The systems and methods
described herein may be used to achieve performance that is
similar to BCJR but with far less complexity.

FIG. 4 is a graphical illustration 400 of a winning path 470
and two losing paths 472 and 474 that are evaluated during a
first step of a traceback process that may be performed by
binary SOVA traceback block 250. In the example shown in
FIG. 4, symbols are taken from GF(4), and a traceback depth
is one. The traceback depth determines a number of losing
paths that are evaluated during the traceback process. In par-
ticular, for a traceback depth d, there are 27 losing paths that
are evaluated, or “traced back.” In the example shown in FIG.
4, because the traceback depth is one, two losing paths are
evaluated. A traceback depth of one is used herein for ease of
illustration, but in general, any traceback depth may be used,
and any number of losing paths may be considered. For ease
of'illustration, the set of candidate symbols taken from GF(4)
areassumedto be0, 1, 2, and 3. However, one of ordinary skill
in the art will understand that any size of any set of candidate
symbols may be used without departing from the scope of the
present disclosure.

25

35

40

45

8

In the example shown in FIG. 4, each time instance (de-
fined by t=0, t=1, t=2, t=3, and t=4) has the length of two bits
for GF(4). Furthermore, the winning path 470 includes a set
of most likely symbol values for the five time instances. In
particular, u,,(t=0)=2, u,,(t=1)=1, u,,(t=2)=2, u,,(t=
3)=1,andu,,, (t=4)=0. Similarly, each of losing paths 472 and
474 includes a set of error symbol values depicted above each
losing path 472 and 474. The set of error symbol values
represents differences between the symbol values for the
corresponding losing path 472 or 474 and the symbol values
for winning path 470. The error symbol values for each losing
path 472 and 474 is determined based on an XOR operation
that is performed on the symbol values for the losing path and
the symbol values for winning path 470. In an example, at
time t=2, losing path 472 has symbol value (00),, while
winning path 470 has symbol value (10),. In this case, the
XOR of (00), and (10), is (10),, which is the error symbol
value for losing path 472 at time t=2. Winning path 470 has a
lowest PM value of P, losing path 472 has a larger PM value
of P,+A,, and losing path 474 has an even larger PM value of
P,+A,+A,. As shown in FIG. 4, P,, corresponds to aPM ofa
path that has nine bits (in particular, two bits for each of four
complete symbols at t=0, 1, 2, and 3, and one bit for the half
symbol at time t=4). As used herein, P, may be referred to as
a local metric.

An example of the traceback process is described in rela-
tion to FIG. 7. During an initial step of the traceback process,
a set of vectors of error metric values eM,,, is initialized,
where the index t denotes the time instance. As described
above, the length of each vector eM,, , is q-1, or three in this
example. Considering the first three time instances shown in
FIG. 4 (t=0, t=1, and t=2), eM,, ,, eM,, ;, and eM,, , are each
initialized to a 3x1 vector with elements of co, where each k"
elementin a vector eM,, , corresponds to an error metric asso-
ciated with a possible error that has a deviation from the
winning path. The values of the elements in the vector eM,, ,
provide an indication of a probability that an error was made
for the corresponding symbol.

As described in this example, the traceback process oper-
ates from right to left. However, in general, the traceback
process may operate in any direction, including from left to
right. In an illustrative example, starting at t=3, the value for
both losing paths 472 and 474 is (00),, indicating zero error.
In this case, none of the elements in the error metric vector
eM,_ ; are updated.

Then, at t=2, the error symbol value for both losing paths
472 and 474 is (10),. In this case, the result of an XOR
operation between u,,(t=2) (i.e., 2) and the error symbol
value is used to set a decision and ultimately a log likelihood
value. In particular, (10), XOR (10), results in a decision
(00),. Thus, A, (0) is set to be equal to the negative of the PM
of the corresponding path. In this case, because both losing
paths 472 and 474 have the same error symbol value, the path
with the lower PM is selected (i.e., losing path 472). As
indicated by Eq. 2, the second element of the error metric
vector eM,, , is written as A, (u,,,)M, ([u,,D2]). Since u,,,
(t=2)=2, this expression becomes A, (2)-A,([2D2])=A(2)-1,,
([0D==(P))—-(=(P,+A,))=A,. Thus, the second element in
eM,, ,isupdated to A,. In other words, the second element in
eM,,, is updated to the minimum of the current value of the

@)
eMuyo = eMuvl = eMuyz = eMu,3 =

US 9,385,757 B1

9

second element in eM,, , and the lower of the differences
between the path metrics of winning path 470 and losing
paths 472 and 474.
EMu,z/kzz]:min(EMu,z/k]:A1aA1+A2) 3)
Because the values of A; and A, are positive, A;<A +A,,
and the value of eM, ,[k=2] is updated from o to A,.

©

eM,s =| Ay

The three values (eM,, ,[k], A;, and A +A,) may be simulta-
neously compared. Alternatively, eM, ,[k] may be initially
compared to A,, and path 474 may not need to be considered
because the paths with lower PMs may be considered before
paths with higher PMs. Neither losing path 472 nor losing
path 474 have an error symbol value of (01), or (11), at t=2,
so the values of eM, ,[k=1] and eM, ,[k=3] are not yet
updated.

At t=1, the value for losing path 472 is (00),, indicating
zero error. However, the value for losing path 474 is (11),,
indicating that the third value in eM,, ; should be updated to
the difference in path metrics for losing path 474 and winning
path 470. That is, the value of eM,, , [k=3] is updated from o
o Aj+A,.

o

oo
eMuvl =

oo

AL+ A,

Neither losing path 472 nor losing path 474 have an error
symbol value of (01), or (10), at t=1, so the values of eM,
[k=1] and eM,, ,[k=2] are not yet updated.

At t=0, the value for losing path 472 is (01),, and the value
forlosing path 474 is (11),. Because losing paths 472 and 474
have different non-zero values, this means that two values in
eM,, , should be updated. In particular,

Ay
o0

A+ 4,

eM,o =

FIG. 5 is a graphical illustration 500 of a winning path 580
and two losing paths 582 and 584 that are evaluated during a
second step of a traceback process that may be performed by
binary SOVA traceback block 250. As in the example shown
in FIG. 4, symbols are taken from GF(4), and a traceback
depth is one. Graphical illustration 500 is similar to graphical
illustration 400, except that the two losing paths 472 and 474
in FIG. 4 are replaced with two other losing paths 582 and
584. In the example shown in FIG. 5, the PM of winning path
580 is P,, which may be different from P,. As is described in
relation to FIG. 4, P, is the local metric of a path with nine
bits. As shown in FIG. 5, P, is the local metric of a path with
ten bits (in particular, five complete symbols for times t=0, 1,
2, 3, and 4). In an example, nonlinear Viterbi detector 244
operates from left to right (i.e., in chronological order). For
each computation of a new PM, binary SOVA traceback block
250 operates from right to left (i.e., in reverse chronological
order, thereby allowing for computation in pipeline stages.
The losing paths have corresponding PM values that are

10

15

20

25

30

35

40

45

50

55

60

65

10

larger than P,. In particular, losing path 582 has a PM value of
P,+A,, and losing path 584 has an even larger PM value of
Po+As+A,.

At the beginning of a second step of the traceback process,
the values for the error metric vectors are set according to the
end of the first step as described in relation to FIG. 4. In
particular,

Ay oo 0o
eM, o = oo ,eM,; = co ,and eM,, =| Ay |.
Al +A2 Al +A2 [e]

The process as described in relation to FIG. 4 is repeated for
losing paths 582 and 584.

At1=3, the value for both losing paths 582 and 584 is (00),,
indicating zero error. In this case, none of the elements in the
error metric vector eM,, ; are updated.

At t=2, the value for losing path 582 is (11),, and the value
for losing path 584 is (01),. An XOR operation is performed
between the most likely value u,,, (t=2) (i.e., (10),) and each
of the error symbol values. In particular, for losing path 582,
(10), XOR (11), is (01),. Thus, A,(1) is set to be equal to the
negative of the PM of losing path 582, or —(P,+A;). Further-
more, for losing path 584, (10), XOR (01), is (11),. Thus,
A,(3)1s setto be equal to the negative of the PM of losing path
584, or —(P,+A;+A,). Moreover, the third (for losing path
582) and first (for losing path 584) elements of eM,, , are
compared to A; and A +A,, respectively. Because the third
and first elements of eM,, , are both o, the values are appro-
priately updated such that

A3 + A4
Ay
A

eM,, =

At t=1, the value for losing path 582 is (00),, indicating
zero error. However, the value for losing path 584 is (01),,
indicating that the first element of eM, ; (®) should be
replaced with A;+A,. Thus,

A3 +A4
=]

Al +4A;

eM, | =

At t=0, the value for losing path 582 is (10),, and the value
for losing path 584 is (11),. This indicates that the second and
third elements of eM,, , should be compared to A; and A;+A,,
respectively. Since the second element is co, the second ele-
ment is replaced with A;. However, the third element has
value A;+A,, such that the third element is replaced with
min(A;+A,,A;+A,). Thus,

Ay
Az

eMuyo = .
min(A; +A,, Az +Ay)

The steps described in relation to FIGS. 4 and 5 may be
repeated (with more and more losing paths in consideration)
until all the initial o values of the error metrics eM,, , are

US 9,385,757 B1

11

replaced with finite values and all error metrics at all time
instances are used. However, in some cases, it is possible that
an initial co value in the error metric vector is not replaced
even after all losing paths are considered at all relevant time
instances. This indicates a high level of confidence in the
initial Viterbi decision for the corresponding symbol.

FIG. 6 is a flowchart of a process 600 for determining a
likelihood value. For example, modified Viterbi detector 200
may execute process 600 to determine a likelihood value such
as a log likelihood ratio value based on the error metric values
as described in relation to FIGS. 4 and 5.

At 602, modified Viterbi detector 200 identifies a winning
path through a trellis and a plurality of losing paths through
the trellis. As is described in relation to FIG. 2, the winning
path 246 may be determined by a nonlinear Viterbi detector
244 and be provided to a binary SOVA traceback block 250.
The winning path 246 may correspond to winning path 470 in
FIG. 4 or to winning path 580 in FIG. 5, and may generally
correspond to a most likely path or a best path with a minimal
path metric value. The losing paths that are identified at 602
correspond to other candidate paths that have path metric
values that are greater than the path metric value of the win-
ning path. The losing paths may correspond to losing paths
472 and 474 in FIG. 4 or to losing paths 582 and 584 in FIG.
5, or a combination thereof.

At 604, path metric differences within the trellis are com-
puted based on the winning path and at least some of the
plurality of losing paths that were identified at 602. As
described in relation to FIGS. 4 and 5, path metric differences
correspond to the A values and represent differences in path
metrics between the winning path and a losing path. For
example, the path metric difference between winning path
470 and losing path 472 is A,, the path metric difference
between winning path 470 and losing path 474 is A +A,, the
path metric difference between winning path 580 and losing
path 582 As O,, and the path metric difference between win-
ning path 580 and losing path 584 is A;+A,.

At 606, a pair of error metrics is calculated based on the
path metric differences that were computed at 604. As is
described in relation to FIGS. 4, 5, and 7, a set of error metric
vectors are initialized to have elements of o, and are itera-
tively updated based on symbol values of the various losing
paths under consideration and based on a comparison
between a current value of the error metric and a path metric
difference. When the current value of the error metric exceeds
the path metric difference, the value of the error metric is
updated to be equal to the path metric difference. This process
is iteratively repeated for multiple losing paths, across mul-
tiple time instances, and for each element of the error metric
vector, until all (or a threshold number) of the o values in the
error metrics are replaced with finite values.

In some embodiments, the first error metric in the pair of
error metrics is determined based on a most likely symbol
u,,, in the winning path and another symbol u,. In particular,
the first error metric in the pair is determined based on an
exclusive OR operation between u,,, and u,. A second error
metric in the pair is determined based on the most likely
symbol u,,;. In this way, a reference value for each error
metric in the pair of error metrics is a most likely symbolu,,,
in the winning path.

At 608, a likelihood value is determined based on a differ-
ence between the pair of error metrics. As is described in
detail in relation to FIG. 7, the likelihood value for a symbol
u, may be written as a difference between a pair of error
metrics calculated at 606. In particular, the first error metric is
based on an exclusive OR operation between the most likely
symbol u,,, and the symbol u,, while the second error metric

10

15

20

25

30

35

40

45

50

55

60

65

12

is based on the most likely symbol u,,,;. In some embodi-
ments, the likelihood value is a log likelihood value that is the
difference between the two error metrics in the pair.

FIG. 7 is a flowchart of a process 700 for updating error
metric values and calculating likelihood values. For example,
modified Viterbi detector 200 may execute process 700 to
update the error metric values as described in relation to
FIGS. 4 and 5. In particular, modified Viterbi detector 200
may execute process 700 by retrieving a winning path with
pathmetric PM, ; (702), initializing a time interval t=0 (704),
initializing all elements in an error metric eM,,, to © (706),
selecting symbol value u,,, at time t as a reference value
(708), initializing a candidate error counter k=1 (710), and
initializing a losing path counter p=1 (712). Modified Viterbi
detector 200 compares a current error symbol value for the
p-th losing path at time t to the candidate error counter k
(714). If the current error symbol value is equal to k, then the
k-th element of the error metric vector eM,, , is compared to
the difference between the path metric of the p-th losing path
(PM,)) and the path metric of the winning path (PM,,) (716).
If the k-th element of the error metric vector eM,, , exceeds the
difference, the k-th element is updated to be equal to the
difference (720). The losing path counter p is incremented
(718), and the next losing path is considered until all P losing
paths have been considered (722). The candidate error
counter k is incremented (726) until all g—1 candidate errors
have been considered (724). The time instance t is incre-
mented (730) until all time instances T have been processed
(728). After the values for eM, , have been appropriately
updated, LLR values are computed based on the values of the
elements in each eM,,, (732).

In particular, at 732, symbol LLR computation circuitry
252 receives the updated error metric values eM, , from
binary SOVA traceback block 250 and processes eM,, , to
obtain corresponding LL.R values. An LLR value for a symbol
value v, may be defined as:

L ()= 0)= b, (1)) ®)

The above equation may be rewritten as:

L=t~ P)= Do (a12) =1 (0)] ©

by adding a likelihood value associated with the most likely
symbol u, , and then subtracting the same likelihood value to
the right hand side of the equation. By writing the LLR in this
form, the LLR can be rewritten in terms of the error metrics.
In particular, because eM, (u,,, Du,) is equal to A, (u,,,)-A,,
([upzlu,,Du,]), which is equal to A, (u,,)-A,(u,) the LLR
value may be written as:

L, (u)=eM, (tp Dr1s)~eM, (1211 (10)

The most recent values of eM,, at the end of the second step
described in relation to FIG. 5 may be plugged into Eq. 10 to
compute the entries of the LLR vector. In an example, to
compute the second entry (where u,=1) of the LLR vector at
time t=0, L (1)=eM,(u,,,P1)-eM, (u,,,). Because at time O,
u,,,=2, the second entry of the LLR vector may be written as
L (1)=eM,,(21)-eM, (2)=eM,,(3)-eM,,(2). As described in
relation to FIG. 5, at time t=0, eM,,(3)=min(A,+A,,A;+A,).
Assuming that A +A,<A;+A,, eM,,(3)=A, +A,. Moreover, at
time t=0, eM, (2)=A;. Thus, L, (1)=A, +A,-A;. The rest of the
values of the LLR vector at different time instances may be
similarly computed, and the LLR values may be written as:

US 9,385,757 B1

13

0 (11
Ap+ Ay — Ay
—As
Ay Ay

L(1=0)=

0 (12)
—Az — Ay
Al +A2 —A3 —A4

oo

L=1)=

0 (13)
Az -4
—A,
As+ Ay — A

LG=2)=

FIG. 8 is a graphical illustration of representations of sym-
bol likelihood values and symbol metrics. Symbol likelihood
values may be negative or positive, and the range of likelihood
values can be large. Sometimes, hardware is implemented in
such a way that only positive values are used. Thus, storing
likelihood values, which may be negative or positive, may be
problematic. To remedy this problem, a set symbol metrics
may be defined as a shifted set of LLR values. In particular, a
symbol metric is an offset version of a corresponding LLR
value, where the amount of offset is defined such that all
symbol metrics are greater than or equal to zero. In an
example, the magnitude of the most negative valued LLR
value (i.e., the most likely symbol) in a set of LLR values
defines the amount of offset, such that the most negative
valued LLR value is shifted to the origin for the correspond-
ing symbol metric. Similarly, the other LLR values in the set
of LLR values are shifted by the same offset amount, such that
relative differences between LLR values in the set are pre-
served.

InFIG. 8, two number lines are shown, where the left-most
points correspond to the most likely symbols, while the right-
most points correspond to the least likely symbols. The top
number line shows symbol LLR values having two negative
values -15 (for the most likely symbol 2) and -10 (for the
symbol 1), a zero value (for the symbol 0), and a positive
value 20 (for the least likely symbol 3). The bottom graph
shows corresponding symbol metric values having the values
0 (for the most likely symbol 2), 5 (for the symbol 1), 15 (for
the symbol 0), and 35 (for the least likely symbol 3). Thus, in
the example shown in FIG. 8, the symbol metric values rep-
resent shifted versions of the LLR values, such that the most
likely symbol has a symbol metric value of zero. For example,
the symbol metric values may be provided to nonlinear Vit-
erbi detector 244 instead of, or in addition to, the a-priori LLR
values 242. A symbol metric sM may be written in terms of
the LLR values in accordance with:

M, (=L, (ut)-ming, {L, () }=(L,)-L,"™™) 14

Using symbol metrics instead of LLR values may be desirable
if computation costs are limited. In particular, in some cases,
hardware is implemented in a way such that only positive
values are used. In this instance, it may be desirable to use
symbol metrics instead of LLR values. In particular, comput-
ing using a symbol metric does not require keeping track ofan
extra bit for the sign of the symbol metric, as is required for
performing a computation with an LLR value. Furthermore,

10

15

20

30

40

45

55

14

converting from a symbol metric value to a corresponding
LLR value is a simple computation and can be performed
easily and quickly.

In general, for non-binary symbols, it may be easier or
cheaper for a hardware system to compute values for the error
metrics than for LLR values. For example, a smaller number
of bits may be required to store an error metric value com-
pared to an LLR value. In addition, as described herein,
converting from an error metric value to an LLR value is a
simple computation and can be performed easily and quickly.
Thus, it may be desirable to use the error metric representa-
tion for storage and to use the symbol metric representation
for computation, because the LLLR values may be computed
from the error metric or from the symbol metric.

In an example, for a set of candidate symbol values taken
from GF(4), LLR values, error metric values, and symbol
metric values may be associated with different storage and/or
computational requirements. For example, a set of LLR val-
ues may be written as:

0 (15)
=)
=)

s

In general, the LLR value for the u; entry may be written as:

L)=k (at0)- D (8) (16)

LLR values use signed entries, such that both the sign (one
bit) and the magnitude (five bits) need to be stored. In this
case, because there are three non-zero entries in [, storing
the above representation of L, requires 3x(5+1)=18 bits/sym-
bol.

A set of error metric values may be written as:

0 an
Pt =ty
e = T 617
log(Pt = tipp))
Pulv = [t ©2])
log(pult = tipr))
Pultt = [upr ®3])

eM, =

In general, the error metric value for the u; entry may be
written as:

eM,)=k (tag) =M (tta Drty) (18)

Error metric values are unsigned, such that only the magni-
tude (five bits) need to be stored. However, two additional bits
need to be stored for the most likely symbol u,,,, which can
dynamically change for different time instances. Thus, stor-
ing the above representation of eM,, requires (3x5)+2)=17
bits/symbol.

US 9,385,757 B1

15

A set of symbol metric values may be written as:

Pul = MML)) (19
Pulu=0)
pul = MML))

M, = pule=1)
pulu = MML))
pule=2)
Pul = MML))

Pulu=3)

In general, the symbol metric value for the u, entry may be
written as:

SM, () =N ag)~ (1) 0)

As described above, one of the entries of sM,, is zero because
one of the symbols u=0, 1, 2, 3 corresponds to the most likely
symbol. However, unlike for I, and eM,, the most likely
symbol does not necessarily correspond to the first entry.
Thus, four values are stored for the symbol metric value.
Furthermore, the entries of sM,, are unsigned, such that only
the magnitude (five bits) need to be stored. Thus, storing the
above representation of sM,, requires 4x5=20 bits/symbol.

In some embodiments, an error metric value may be con-
verted to a symbol metric value directly, without converting to
an LLR value. In particular,

SM, (u))=eM, (1, Duy) @D

Furthermore, a symbol metric may be converted to an error
metric value directly, via

M, 1)~ (131) @2)

FIG. 9 is a block diagram 900 of a computing device, such
as any of the components of the system of FIG. 1, for per-
forming any of the processes described herein, in accordance
with an embodiment of the disclosure. Each of the compo-
nents of these systems may be implemented on one or more
computing devices 900. In certain aspects, a plurality of the
components of these systems may be included within one
computing device 900. In certain embodiments, a component
and a storage device 911 may be implemented across several
computing devices 900.

The computing device 900 comprises at least one commu-
nications interface unit 908, an input/output controller 910,
system memory 903, and one or more data storage devices
911. The system memory 903 includes at least one random
access memory (RAM 902) and at least one read-only
memory (ROM 904). All of these elements are in communi-
cation with a central processing unit (CPU 906) to facilitate
the operation of the computing device 900. The computing
device 900 may be configured in many different ways. For
example, the computing device 900 may be a conventional
standalone computer or, alternatively, the functions of com-
puting device 900 may be distributed across multiple com-
puter systems and architectures. In FIG. 9, the computing
device 900 is linked, via network 918 or local network, to
other servers or systems.

The computing device 900 may be configured in a distrib-
uted architecture, wherein databases and processors are
housed in separate units or locations. Some units perform
primary processing functions and contain, at a minimum, a
general controller or a processor and a system memory 903.
In distributed architecture embodiments, each of these units
may be attached via the communications interface unit 908 to
a communications hub or port (not shown) that serves as a
primary communication link with other servers, client or user

10

15

20

25

30

35

40

45

50

55

60

65

16

computers and other related devices. The communications
hub or port may have minimal processing capability itself,
serving primarily as a communications router. A variety of
communications protocols may be part of the system, includ-
ing, but not limited to: Ethernet, SAP, SAS™, ATP, BLUE-
TOOTH™, GSM and TCP/IP.

The CPU 906 comprises a processor, such as one or more
conventional microprocessors and one or more supplemen-
tary co-processors such as math co-processors for offloading
workload from the CPU 906. The CPU 906 is in communi-
cation with the communications interface unit 908 and the
input/output controller 910, through which the CPU 906 com-
municates with other devices such as other servers, user ter-
minals, or devices. The communications interface unit 908
and the input/output controller 910 may include multiple
communication channels for simultaneous communication
with, for example, other processors, servers or client termi-
nals.

The CPU 906 is also in communication with the data stor-
age device 911. The data storage device 911 may comprise an
appropriate combination of magnetic, optical or semiconduc-
tor memory, and may include, for example, RAM 902, ROM
904, flash drive, an optical disc such as a compact disc or a
hard disk or drive. The CPU 906 and the data storage device
911 each may be, for example, located entirely within a single
computer or other computing device; or connected to each
other by a communication medium, such as a USB port, serial
port cable, a coaxial cable, an Ethernet cable, a telephone line,
a radio frequency transceiver or other similar wireless or
wired medium or combination of the foregoing. For example,
the CPU 906 may be connected to the data storage device 911
via the communications interface unit 908. The CPU 906 may
be configured to perform one or more particular processing
functions.

The data storage device 911 may store, for example, (i) an
operating system 912 for the computing device 900; (ii) one
or more applications 914 (e.g., computer program code or a
computer program product) adapted to direct the CPU 906 in
accordance with the systems and methods described here, and
particularly in accordance with the processes described in
detail with regard to the CPU 906; or (iii) database(s) 916
adapted to store information that may be utilized to store
information required by the program.

The operating system 912 and applications 914 may be
stored, for example, in a compressed, an uncompiled and an
encrypted format, and may include a computer program code.
The instructions of the program may be read into a main
memory of the processor from a computer-readable medium
other than the data storage device 911, such as from the ROM
904 or from the RAM 902. While execution of sequences of
instructions in the program causes the CPU 906 to perform
the process steps described herein, hard-wired circuitry may
be used in place of, or in combination with, software instruc-
tions for embodiment of the processes of the present disclo-
sure. Thus, the systems and methods described are not limited
to any specific combination of hardware and software.

Suitable computer program code may be provided for per-
forming one or more functions as described herein. The pro-
gram also may include program elements such as an operat-
ing system 912, a database management system and “device
drivers” that allow the processor to interface with computer
peripheral devices (e.g., a video display, a keyboard, a com-
puter mouse, etc.) via the input/output controller 910.

The term “computer-readable medium” as used herein
refers to any non-transitory medium that provides or partici-
pates in providing instructions to the processor of the com-
puting device 900 (or any other processor of a device

US 9,385,757 B1

17

described herein) for execution. Such a medium may take
many forms, including, but not limited to, non-volatile media
and volatile media. Non-volatile media include, for example,
optical, magnetic, or opto-magnetic disks, or integrated cir-
cuit memory, such as flash memory. Volatile media include
dynamic random access memory (DRAM), which typically
constitutes the main memory. Common forms of computer-
readable media include, for example, a floppy disk, a flexible
disk, hard disk, magnetic tape, any other magnetic medium, a
CD-ROM, DVD, any other optical medium, punch cards,
paper tape, any other physical medium with patterns of holes,
a RAM, a PROM, an EPROM or EEPROM (electronically
erasable programmable read-only memory), a FLASH-EE-
PROM, any other memory chip or cartridge, or any other
non-transitory medium from which a computer can read.

Various forms of computer readable media may be
involved in carrying one or more sequences of one or more
instructions to the CPU 906 (or any other processor of a
device described herein) for execution. For example, the
instructions may initially be borne on a magnetic disk of a
remote computer (not shown). The remote computer can load
the instructions into its dynamic memory and send the
instructions over an Ethernet connection, cable line, or even
telephone line using a modem. A communications device
local to a computing device 900 (e.g., a server) can receive the
data on the respective communications line and place the data
on a system bus for the processor. The system bus carries the
data to main memory, from which the processor retrieves and
executes the instructions. The instructions received by main
memory may optionally be stored in memory either before or
after execution by the processor. In addition, instructions may
be received via a communication port as electrical, electro-
magnetic or optical signals, which are exemplary forms of
wireless communications or data streams that carry various
types of information.

While various embodiments of the present disclosure have
been shown and described herein, it will be obvious to those
skilled in the art that such embodiments are provided by way
of example only. Numerous variations, changes, and substi-
tutions will now occur to those skilled in the art without
departing from the disclosure. It should be understood that
various alternatives to the embodiments of the disclosure
described herein may be employed in practicing the disclo-
sure. It is intended that the following claims define the scope
of the disclosure and that methods and structures within the
scope of these claims and their equivalents be covered
thereby.

What is claimed is:
1. A method of generating a likelihood value which detects
an error, the method comprising:
identifying, by at least one circuitry a winning path through
atrellis and a plurality of losing paths through the trellis;

computing, by the at least one circuitry, path metric difter-
ences within the trellis based on the winning path and at
least some of the plurality of losing paths;
calculating, by the at least one circuitry, a pair of error
metrics based on the path metric differences; and

determining, by the at least one circuitry, the likelihood
value based on a difference between the pair of error
metrics to detect an error in data transmitted through a
channel.

2. The method of claim 1, wherein a first error metric in the
pair is determined based on a most likely symbol u,,; in the
winning path and another symbol u,, and wherein a second
error metric in the pair is determined based on the most likely
symbol u,;.

20

35

40

45

18

3. The method of claim 2, wherein the first error metric in
the pair is determined based on an exclusive OR operation
between u,,; and u,.

4. The method of claim 1, wherein a reference value for
each error metric in the pair is a most likely symbol u,,; in the
winning path.

5. The method of claim 1, wherein the pair of error metrics
are elements in a vector of error metrics, wherein a length of
the vector of error metrics is one less than a number of
candidate symbols.

6. The method of claim 1, wherein calculating the pair of
error metrics comprises updating, by the at least one circuitry,
an error metric in the pair to be equal to one of the path metric
differences when it is determined that a previous value of the
error metric in the pair is greater than the one of the path
metric differences.

7. The method of claim 1, further comprising determining,
by the atleast one circuitry, a plurality of additional likelihood
values, the likelihood value and each additional likelihood
value being associated with a corresponding candidate sym-
bol value.

8. The method of claim 7, further comprising offsetting, by
the at least one circuitry, the likelihood value and the plurality
of additional likelihood values by an offset amount to obtain
a plurality of symbol metric values.

9. The method of claim 8, wherein the offset amount is a
magnitude of the likelihood value that corresponds to a most
likely symbol u,,, of the winning path.

10. The method of claim 1, wherein the likelihood value is
used in a soft output Viterbi algorithm (SOVA).

11. A detector comprising circuitry, which detects an error
and is communicatively coupled to a memory, wherein the
circuitry comprises:

detecting circuitry which:

identifies a winning path through a trellis and a plurality
of losing paths through the trellis;

computes path metric differences within the trellis based
on the winning path and at least some of the plurality
of' losing paths;

traceback circuitry which calculates a pair of error metrics

based on the path metric differences; and

computation circuitry which determines a likelihood value

based on a difference between the pair of error metrics to
detect an error in data transmitted through a channel.

12. The detector of claim 11, wherein a first error metric in
the pair is determined based on a most likely symbol u,,, in
the winning path and another symbol u,, and wherein a second
error metric in the pair is determined based on the most likely
symbol u,;.

13. The detector of claim 12, wherein the first error metric
in the pair is determined based on an exclusive OR operation
between u,,; and u,.

14. The detector of claim 11, wherein a reference value for
each error metric in the pair is a most likely symbol u, ,; in the
winning path.

15. The detector of claim 11, wherein the pair of error
metrics are elements in a vector of error metrics, wherein a
length of the vector of error metrics is one less than a number
of candidate symbols.

16. The detector of claim 11, wherein the traceback cir-
cuitry calculates the pair of error metrics by updating an error
metric in the pair to be equal to one of the path metric differ-
ences when it is determined that a previous value of the error
metric in the pair is greater than the one of the path metric
differences.

17. The detector of claim 11, wherein the circuitry further
determines a plurality of additional likelihood values, the

US 9,385,757 B1
19

likelihood value and each additional likelihood value being
associated with a corresponding candidate symbol value.

18. The detector of claim 17, wherein the circuitry further
offsets the likelihood value and the plurality of additional
likelihood values by an offset amount to obtain a plurality of 5
symbol metric values.

19. The detector of claim 18, wherein the offset amount is
amagnitude of the likelihood value that corresponds to a most
likely symbol u,,, of the winning path.

20. The detector of claim 11, wherein the detector is a soft 10
output Viterbi algorithm (SOVA) detector.

#* #* #* #* #*

20

